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The brain contains a fairly low amount of glycogen, mostly
located in astrocytes, a fact that has prompted the suggestion
that glycogen does not have a significant physiological role in
the brain. However, glycogen metabolism in astrocytes is essen-
tial for several key physiological processes and is adversely
affected in disease. For instance, diminished ability to break
down glycogen impinges on learning, and epilepsy, Alzheimer’s
disease, and type 2 diabetes are all associated with abnormal
astrocyte glycogen metabolism. Glycogen metabolism supports
astrocytic K� and neurotransmitter glutamate uptake and sub-
sequent glutamine synthesis—three fundamental steps in excit-
atory signaling at most brain synapses. Thus, there is abundant
evidence for a key role of glycogen in brain function. Here, we
summarize the physiological brain functions that depend on
glycogen, discuss glycogen metabolism in disease, and investi-
gate how glycogen breakdown is regulated at the cellular and
molecular levels.

Glycogen in the brain is mostly but not exclusively confined
to astrocytes (1), and astrocytic glycogen metabolism is vital for
a number of fundamental processes in the brain. For instance,
brain glycogen is affected in hypoglycemia (2). Curiously, the
glycogen level rebounds to a higher level following a single but
not repeated hypoglycemic episodes in humans (2, 3). Interest-
ingly, it has repeatedly been reported that the ability to synthe-
size or break down brain glycogen is important in learning and
memory formation (4 –7), and maladaptive learning, measured
as the conditioned response to cocaine in mice, is reduced when
glycogen breakdown is blocked (8). Thus, a linkage exists
between breakdown of glycogen and the neural plasticity
involved in both learning and addiction. In addition, glycogen
breakdown is essential for key astrocytic processes, such as
uptake of K� and neurotransmitter glutamate, and the sub-
sequent synthesis of glutamine as part of the glutamate–
glutamine cycle (9 –11). However, several details regarding the
role and regulation of glycogen metabolism in physiology and

pathology are still obscure. The importance of astrocyte glyco-
gen is somewhat enigmatic in light of the fact that the ample
supply of extracellular glucose would appear to be sufficient to
serve the brain’s energetic needs. Hence, two questions are as
follows. (i) What is it about glycogen that gives it this prominent
position in brain biochemistry and physiology? (ii) what extra-
cellular and intracellular cues regulate these processes? As will
be evident from the discussions below, we are really just begin-
ning to understand this at the cellular and molecular levels.

Glycogen in health and disease

Historically, brain glycogen was thought to be vestigial due to
the limited amount present (12). Later, glycogen was consid-
ered to constitute an emergency fuel, which was degraded only
when there was a discontinuation in the cerebral glucose sup-
ply. Now we know that degradation of glycogen is crucial for
sustaining a number of physiological processes. It should be
noted that alterations in glycogen metabolism may be a conse-
quence of the changes related to disease, rather than the under-
lying cause of disease. The altered glycogen metabolism may, of
course, bring about new complications because glycogen
breakdown is a key process involved in many aspects of proper
brain function.

Implication of glycogen in learning, memory, and Alzheimer’s
disease

Degradation of glycogen is important for learning and mem-
ory formation, as well as long-term memory consolidation (4, 5,
13, 14). Disruptions of glycogen metabolism have also been
linked to Alzheimer’s disease, potentially due to overactivation
of GSK-3 and a resulting inhibition of glycogen synthase (15).
Moreover, mice lacking glycogen synthase in the brain display a
significant deficiency in the acquisition of an associative learn-
ing task (4). Furthermore, intracerebral injection of �-amyloid
(A�(1– 42)) into 1-day-old chicks caused memory loss, which
could not be rescued by stimulation of glycogen breakdown
likely because �-amyloid impairs glycogen synthesis via activa-
tion of GSK-3 (15). Impairments in glycogen synthesis could
reduce brain glycogen levels, hampering the physiological flux
of glucose units through glycogen, which is important for learn-
ing and memory. In line with the importance of noradrenergic
regulation of flux through the glycogen shunt (11), noradrener-
gic dysfunction was proposed to be an important component of
Alzheimer’s disease (16 –18). The importance of glycogen with
regard to Alzheimer’s disease is underlined by a recent study
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that found facilitated spatial learning and increased glycogen
stores in an Alzheimer’s disease model fed a diet containing
pyruvate (19).

Implication of glycogen in seizures and epilepsy

The involvement of glycogen in glutamatergic neurotrans-
mission has repeatedly been demonstrated. Glycogen may be
converted to lactate that can be released to the extracellular
space and used by neurons or other cells as fuel (20, 21). Fur-
thermore, glycogen degradation fuels glutamate transport in
astrocytes (11, 22) or glycogen in astrocytes can be used for
synthesis of glutamine, thus serving as precursor for biosynthe-
sis of neurotransmitter glutamate (13). In line with this, it has
been suggested that reduced glycogen degradation contributes
to the imbalance of glutamatergic and GABAergic neurotrans-
mission associated with epilepsy and seizures (24). Some find-
ings indicate that epileptic animals contain alternatively struc-
tured glycogen molecules that are resistant to degradation (24),
consistent with the increased levels of hippocampal glycogen
detected in epileptic patients (25). Compatible with this, epilep-
tic seizures are the symptomatic hallmark of Lafora disease
characterized by abolished glycogen degradation (see Minire-
view by Gentry et al. (39)).

In contrast to epilepsy involving repetitive seizures, acute
kainate-induced seizures led to a dose-dependent decrease in
cerebral glycogen content (26). This indicates that under this
condition glycogen can be degraded and contributes to the
maintenance of cerebral energy homeostasis. Furthermore,
based on mathematical modeling, it was recently concluded
that glycogen is mobilized as an early event after induced
spreading of depression in rats, an event that, like seizure activ-
ity, leads to synchronized activity in brain encompassing a dras-
tic increase in local energy demand to restore ion homeostasis
(28). This may be explained by excessive neuronal activity being
associated with efflux of K�, which is subsequently removed
from the extracellular space by active transport into astrocytes
(23). In primary astrocyte cultures, glycogen is involved in fuel-
ing the removal of K� from the extracellular space (11), and in
line with this, it has been suggested that glucose is spared for
neuronal energy metabolism when glycogen is used for fueling
astrocytic K� clearance (27). In conclusion, altered glycogen
metabolism seems to be clearly involved in seizure activity and
epilepsy, although the two scenarios appear to affect glycogen
metabolism differently.

Implication of glycogen in sleep

Levels of cerebral glycogen are reduced during wakefulness,
and especially during sleep deprivation, but are replenished
during sleep (29, 30). However, it seems that all brain areas are
not equally affected by sleep and sleep deprivation (30), and
brain glycogen appears to respond distinctly to sleep depriva-
tion in different mouse strains (31). Based on the alterations in
cerebral glycogen content in response to sleep, an hypothesis
was formulated proposing that glycogen (in combination with
adenosine) was a key regulator of sleep (32). However, current
evidence does not support a direct correlation between regula-
tion of sleep and glycogen content (33). It should be noted that
the cerebral glycogen level increases only during the first 15

min of sleep and decreases slowly 20 min after awakening (34),
but otherwise the cerebral glycogen content remains quite con-
stant compatible with a persistent flux through the glycogen
shunt. Recent studies have demonstrated that pharmacological
inhibition of glycogen degradation by intracerebroventricular
(ICV)4 injection of 1,4-dideoxy-1,4-imino-D-arabinitol (DAB; a
blocker of glycogen phosphorylase and thus glycogen break-
down, see below) did not affect either rapid eye movement or
nonrapid eye movement sleep in mice (33). In contrast, ICV
injection of DAB led to a decrease in spontaneous locomotor
activity of almost 40%, suggesting that glycogen breakdown
may be linked to locomotion because sleep/a quiet wake period
is induced whenever glycogen degradation is inaccessible (33).

Astrocyte glycogen in diabetes

Diabetes is characterized by a persistent high concentration
of glucose in plasma, and it is unclear whether glucose transport
into the brain is affected (35). In a rat model of type 2 diabetes,
glycogen metabolism was impaired resulting in a lower amount
of brain glycogen (36). This is further supported by the obser-
vations that cerebral glycogen levels are reduced during hypo-
glycemia but then rebound to even higher levels during subse-
quent normo- or hyperglycemic periods (37–40). Remarkably,
this increase in glycogen content was observed only after the
first incidence of hypoglycemia and not after recurrent epi-
sodes, which led to the conclusion that impairments in glyco-
gen metabolism may be involved in hypoglycemia unawareness
(38).

Intracellular signals regulating glycogen breakdown

Intracellular elevations in the two canonical second messen-
gers, 3�,5�-cyclic adenosine monophosphate (cAMP) and Ca2�,
are required to elicit glycogen breakdown. The receptor-medi-
ated regulation of glycogen breakdown has been known for
decades and has been reviewed extensively (41). However, less
is known about the compartmentalization of the intracellular
signals and how this influences glycogen breakdown. We pre-
dict this to be an important area of future research, and thus we
devote most of this section to explore this topic, rather than
attempting to reproduce what has been previously discussed in
the review literature.

Glycogen phosphorylase

Very briefly, astrocytes express two of the three known iso-
forms of GP, i.e. the brain form, bGP, and the muscle form,
mGP (42, 43). As outlined in Fig. 1, cAMP and Ca2� may elicit
glycogen breakdown because phosphorylase kinase (PhK) that
phosphorylates, and thus activates, GP is itself activated by
Ca2� and phosphorylation by protein kinase A (PKA) (41, 44).
Activity of GP is also linked to the energetic status of the cell,
because AMP activates GP allosterically, although of the two
isoforms of GP in astrocytes, bGP responds more strongly to

4 The abbreviations used are: ICV, intracerebroventricular; PK, pyruvate
kinase; TCA, tricarboxylic acid cycle; DAB, 4-dideoxy-1,4-imino-D-arabi-
nitol; SOCE, store-operated Ca2� entry; GPCR, G protein– coupled receptor;
AC, adenylate cyclase; PhK, phosphorylase kinase; GP, glycogen phosphor-
ylase; bGP, brain GP; mGP, muscle GP; IP3, inositol 1,4,5-triphosphate;
TRPC, transient receptor potential channel.
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AMP than does mGP (41, 45, 46). For a further description of
astrocytic glycogenolysis, see Minireview by Nadeau et al.
(97).

Generation of receptor-coupled cAMP and Ca2� signals in
astrocytes

In astrocytes, cAMP and Ca2� signals may arise following
activation of G protein– coupled receptors, and mouse brain
astrocytes express �1, �2, and �1 and possibly low but func-
tionally important amounts of �2-adrenergic receptors (47, 48).
This is essential because astrocytes are thought to be a major
target of noradrenergic signaling stemming from the locus
coeruleus regulating (among others) glycogen metabolism, e.g.
in relation to the circadian rhythm, arousal, and emotional
stress (47). Thus, norepinephrine may promote or inhibit cyto-
solic cAMP signaling via G�s-coupled �-adrenergic receptors
or G�i-coupled �2-adrenergic receptors, respectively, and
induce cytosolic Ca2� signals via G�q-coupled �1-adrenergic
receptors (Fig. 1) (47). The effects of activating the different
adrenergic receptors on astrocytes for glycogen breakdown
have been studied extensively, although some studies show
somewhat conflicting results (41). Concomitant Ca2� and
cAMP signals are needed (at least in muscle) to elicit glycogen
breakdown via activation of PhK, which might explain the pres-
ence of both G�q- and G�s-coupled noradrenergic receptors on
astrocytes. The remaining part of this section will deal with
what we know and, more importantly what we need to know
about these intracellular signals.

Putative role of nonreceptor-coupled Ca2� and cAMP signals

Astrocytic Ca2� signals have been researched intensively for
the last few decades (49), whereas the other canonical second
messenger, cAMP, has received less attention, although the
protein biosensors for detecting cAMP have been available for
about 2 decades (50). We know that both cAMP and Ca2� sig-
nals may be diffusing across the cytosol or only be present in
discrete micro (or rather nano) domains within the cell (51, 52).
Clearly, this spatial compartmentalization of signaling path-
ways must influence the functional outcomes, and it has indeed
been shown to do so in different preparations (51). In Müller et
al. (53), we provide evidence that coordinated cross-talk
between Ca2� and cAMP induces astrocytic glycogen degrada-
tion, potentially allowing increases in nearby neuronal activity
to engage this important supportive astrocytic process (49, 54).
We induced store-operated Ca2� entry (SOCE) in cultured
astrocytes by depleting the intracellular stores through inhibi-
tion of the sarco/endoplasmic reticulum Ca2�-ATPase pumps
in the absence of extracellular Ca2�, and we then re-introduced
extracellular Ca2� to provoke SOCE (53). In this way, a cytoso-
lic Ca2� signal is generated in the absence of GPCR activation,
and SOCE induced a significant breakdown of glycogen within
minutes. As expected, if Ca2� and cAMP-PKA jointly activate
PhK, the breakdown was curbed by inhibition of adenylate
cyclases (ACs); because SOCE was induced separately from
GPCR activation, this indicates that the breakdown depends on
Ca2�-induced cAMP signaling, presumably by Ca2�-activated
AC isoform 8 (AC8; Fig. 1), which is present in astrocytes (48,
53). AC8 can be activated by SOCE in the absence of GPCR
activation, perhaps due in part to a physical association with
Orai1 channels (55–57), although the relative roles of TRPC
versus Orai channels for mediating SOCE remains controver-
sial (58, 59). Clearly, SOCE represents a nonreceptor-mediated
way of initiating Ca2�/cAMP-dependent glycogen breakdown;
however, in situ SOCE would only occur following an initial
cytosolic Ca2� signal depleting intracellular Ca2� stores such as
a GPCR-G�q-IP3–mediated store depletion. Thus, the AC8-
mediated cAMP signal represents a post-signaling signal aris-
ing subsequent to the initial cytosolic Ca2� signal.

Putative role of compartmentalized intracellular signals

An interesting but little explored aspect of glycogen dynam-
ics is whether compartmentalized Ca2�/cAMP-PKA signals
can selectively affect glycogen breakdown. It has been shown in
cardiac myocytes that activation of �1-adrenergic receptors
produces a far-reaching cytosolic cAMP signal, whereas activa-
tion of �2-adrenergic receptors results in a signal that is
restricted to the T-tubules (T-tubules are invaginations in the
cell membrane that allow a fast cytosolic response to myocyte
depolarization) (60)). It is therefore likely that two different
pools of glycogen are degraded upon activation of �1- and
�2-adrenergic receptors, respectively. We know from electron
micrographs of cultured astrocytes that glycogen granules in
some places line the inside of the plasma membrane but are also
present in “belts” in the cytosol (61); thus, should astrocytes
show the same compartmentalization of �-adrenergic signals,
one might expect very different glycogenolytic responses to �1-

Figure 1. Cartoon depicting the two major signaling pathways regulat-
ing breakdown of glycogen. Glycogen phosphorylase brain (bGP) or muscle
(mGP) forms are both activated by phosphorylation by a dedicated kinase,
phosphorylase kinase (PhK). In addition, bGP is only fully active in the pres-
ence of ample levels of AMP. PhK, in turn, is activated by Ca2� and phosphor-
ylation by protein kinase A (PKA), and both signals are needed for full activa-
tion. In astrocytes, cAMP may be generated by plasma membrane-bound
adenylate cyclase (AC), which in turn is regulated by the G�s or G�i protein-
coupled adrenergic receptors (AR; see text for details). Depending on the
isoform of AC expressed, Ca2� flowing in via Orai or TRPC channels activated
during store-operated Ca2� entry may activate or inhibit the cAMP signal
adding to the complexity; AC8 is activated by Ca2� and is expressed in astro-
cytes. Finally, G�q-coupled �1-adrenergic receptors may regulate glycogen
breakdown via phospholipase C (PLC)-IP3 mediated release by IP3 receptors
(IP3R) in the endoplasmic reticulum (ER).

THEMATIC MINIREVIEW: Glycogen metabolism in diseased brain

7110 J. Biol. Chem. (2018) 293(19) 7108 –7116



versus �2-adrenergic receptor stimulation. Thus, it would be
interesting to ascertain whether populations of astrocytes
functionally express either �1- or �2-adrenergic receptors
or perhaps both receptor subtypes. For instance, one could
imagine that astrocytes expressing �2-adrenergic receptors
might be tuned to release downstream metabolites from gly-
cogenolysis, such as glutamine or lactate, whereas �1-adre-
nergic receptor-expressing astrocytes may respond to nor-
epinephrine by breaking down glycogen for internal fuel or
building blocks for anaplerosis of TCA cycle intermediates.
Studying these aspects is not only interesting in terms of
exploring the basic neurobiology, but also in terms of reveal-
ing putative drug targets.

Glycogen shunt activity

Metabolism of glucose via transient incorporation into gly-
cogen, i.e. with no significant change in the amount of glycogen,
is known as the glycogen shunt. Following phosphorylation of
glucose to glucose 6-phosphate by the first enzyme of glycolysis,
hexokinase, the glucose molecule may be incorporated into gly-
cogen, a process that consumes UTP and is hence energy-de-
manding (Fig. 2). The subsequent degradation of glycogen to
glucose 6-phosphate via glucose 1-phosphate does not require
energy. This means that glucose metabolism via the glycogen
shunt produces one ATP molecule less per molecule of glucose
metabolized compared with “pure” glycolysis, i.e. one instead of

Figure 2. Cartoon depicting glucose and glycogen metabolism in the brain as well as substrate transfer between astrocytes and neurons. In astrocytes,
glucose may be metabolized via glycolysis or the glycogen shunt to pyruvate, which may be converted to lactate and transferred to neurons for oxidative
metabolism to occur. Alternatively, pyruvate may enter the TCA cycle either by way of pyruvate dehydrogenase (PDH) or via pyruvate carboxylase (PC).
Entrance of pyruvate via both of these pathways is required for de novo synthesis of glutamate and glutamine. Glutamine is not neuroactive and may be
transferred to neurons to serve as precursor for glutamate synthesis. Following vesicular release of glutamate and interactions with receptors in the postsyn-
aptic membrane, glutamate is cleared from the synapse mainly by transporters located in the astrocytic membrane. Glutamate can then be converted to
glutamine and transferred to neurons, thereby completing the glutamate– glutamine cycle.
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two ATPs. However, despite being energetically unfavorable,
glycogen shunt activity appears to operate persistently in mus-
cle as well as in brain (11, 62– 64). During increases in cerebral
energy demand, the astrocytic glycogen content will, however,
decrease (5, 64 – 68).

Functional importance of glycogen shunt activity

Although glycogen shunt activity has been revealed in both
muscle and brain (11, 62– 64), its significance and functional
importance are not clear. Abolishment of glycogen degradation
in cultured astrocytes exposed to 13C-labeled glucose led to an
increase in the percent of 13C labeling in lactate, both under
control conditions (without increasing the cells’ energy
demand) and during activation of energy requiring glutamate
transport by exposure to 250 �M D-aspartate (69). Such an
increase in 13C-labeled lactate results when flux through the
glycogen shunt is inhibited and the amount of glucose metab-
olized via glycolysis exceeds the amount metabolized when
both glycolysis and glycogenolysis are operational, i.e. glycolytic
supercompensation (11). These findings propose that the ATP
generated from glycolysis and from glycogen degradation,
respectively, is not equivalent, which may rely on functional
and/or spatial separation of these pathways. The findings may
also be in agreement with the suggestion that glycolysis and
glycogenolysis in astrocytes are complementary (70). Metabolic
separation of these pathways was previously demonstrated by
the observation that lactate derived from glycolysis and glyco-
genolysis contributes to distinct pools of lactate (71). Function-
ally distinctive roles of glycolysis and glycogenolysis have been
observed in vitro as well as in vivo. Even in the presence of
glucose, elimination of glycogen degradation in cultured astro-
cytes was demonstrated to result in reduced accumulation of
D-[3H]aspartate mediated via glutamate transporters (22). This
points toward a functional role of glycogen metabolism, which
cannot be substituted by glycolytic activity, a finding supported
by in vivo studies demonstrating that inhibition of glycogen
degradation resulted in impairment of memory consolidation
in young chickens and memory deficiency in rats, effects that
could not be rescued by glucose (5, 13).

Quantitative significance of glycogen shunt activity

Although it appears that a persistent flux of glucose units
through glycogen is of functional importance for proper brain
function, the fraction of glucose being metabolized via the gly-
cogen shunt is unclear. Norepinephrine is known to stimulate
glycogen synthesis and degradation concomitantly, i.e. acceler-
ate glycogen shunt activity (47, 72–77), and its exposure to
norepinephrine (100 �M) revealed that the glycogen shunt
accounts for �40% of total glucose metabolism under these
conditions. This might be an overestimate due to the potentia-
tion of glycogen shunt activity in the presence of norepineph-
rine. Nevertheless, this may be the best approach to the in vivo
situation where norepinephrine is present in brain at concen-
trations ranging from 1 to 15 �M, depending on the brain area
(78). It should be noted that the finding that 40% of glucose is
metabolized by way of glycogen is severalfold higher than ear-
lier reports predicting glycogen synthesis to account for only
1– 6% of total cerebral glucose consumption (79, 80). Taking

the small glycogen reservoir into account (12), a functional role
of the glycogen shunt with regard to sustaining cerebral activity
and astrocytic neurotransmitter clearance implies that mobili-
zation and the following reestablishment of glycogen are suc-
cessive events mediated within seconds, as discussed by Shul-
man et al. (62). Such a scenario would require a high glycogen
shunt activity involving only the peripheral part of the glycogen
molecule, which is compatible with the finding that the cerebral
glycogen content is remarkably constant under a wide range of
physiological conditions (81). It should be noted that there is a
dearth of data from in vivo studies evaluating the extent of glu-
cose being metabolized via the glycogen shunt. Instead, a turn-
over time constant for brain glycogen has been estimated to be
5 and 24 h in conscious rats and humans, respectively (3, 79, 82,
83). This determines the total glycogen turnover time, i.e. the
time needed for replacement of an amount of glycosyl units
corresponding to the total brain glycogen pool at any given
time. The spherical structure of glycogen and the fact that
glycogen metabolism largely follows the “last-in-first-out”
principle (84) would lead to the suggestion that the outer
part of the molecule is much more dynamic than the inner
layers. Hence, assessing a total turnover of glycogen is much
more complicated than turnover of a pool of substrate exhib-
iting random degradation, and in addition, its relevance may
be questioned.

Role of glycogen phosphorylase isoforms for glycogen shunt
activity

The activity of the GP isoforms is differentially regulated, i.e.
the muscle isoform is activated mainly via phosphorylation by
PhK, whereas the brain isoform is more responsive to allosteric
activation by AMP (46). This suggests that the two isoforms of
GP serve different purposes; mGP elicits glycogen degradation
secondary to receptor stimulation following neuronal activity,
and bGP mediates glycogen breakdown as a consequence of
energy fluctuations in the astrocytic microenvironment. We
have recently suggested that the disproportionate augmenta-
tion of glycolysis observed when glycogen degradation was
abolished, i.e. glycolytic supercompensation, be mediated pre-
dominantly as a result of hampered mGP activity (85). In line
with this, glycolytic supercompensation in vivo was detected in
response to whisker stimulation in conscious rats, i.e. as a con-
sequence of neuronal activation (64). In contrast, the glycolytic
supercompensation observed in cultured astrocytes during
exposure to D-aspartate exhibits a delay of at least 30 min in
onset (11). This may indicate that glycogen used to fuel gluta-
mate transporters is degraded (at least initially) by bGP and
relies on an increase in the intracellular AMP level, and only
sustained exposure to D-aspartate results in phosphorylation of
mGP.

Implications of glycogen in sustaining glutamatergic
neurotransmission

Glycogen as energy substrate during neurotransmission

It has repeatedly been demonstrated that lactate derived
from astrocyte glycogen is able to sustain neuronal activity in
the absence of other energy substrates (20, 67, 68, 86 – 89).
Although the physiological relevance of this may be questioned,
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glycogen degradation was also essential for maintenance of pro-
cesses related to neurotransmission in the presence of a physi-
ological glucose concentration (22, 64, 88). However, whether
the energy derived from glycogen is destined for astrocytic or
neuronal purposes is unclear. Several studies have demon-
strated that obstructing lactate transfer between astrocytes and
stimulated neurons in the absence of an exogenous energy sub-
strate results in accelerated neuronal failure (20, 67, 68, 87– 89).
It is thereby suggested that astrocytes degrade glycogen to lac-
tate, which is then oxidatively metabolized in neurons to cover
the energetic demands related to neurotransmission. This is
supported by the finding that abolishing glycogen degradation
led to a reduction in glutamate release that was comparable
with that observed when inhibiting lactate transfer between
astrocytes and neurons (22). However, the notion that glycogen
is mobilized upon decrements in the energy state of the local
microenvironment (i.e. when the intracellular AMP concentra-
tion increases) implies that glycogen sustains energy-demand-
ing processes within the astrocytic compartment. This is
supported by the observation that impeding glycogen degra-
dation in cultured astrocytes resulted in not only a dispro-
portionate increase in glycolytic activity, i.e. glycolytic
supercompensation, but also led to supercompensation of
TCA cycle metabolism (11). Moreover, following glutama-
tergic neurotransmission, glutamate clearance from the syn-
apse is one of the energy-requiring processes related to astro-
cytes, and astrocytic energy shortage may lead to reversal of the
transporter resulting in excitotoxic levels of glutamate in the
synapse (90). This, in turn, may result in neuronal failure (91,
92). It should be noted, however, that these scenarios are not
mutually exclusive, and glycogen may serve as an energy sub-
strate utilized in both astrocytes and neurons compatible with
the two isoforms of GP being activated by distinct mechanisms.

Glycogen as a precursor for the neurotransmitter glutamate

In addition to its role as an energy substrate, glycogen serves
as a precursor for glutamate and glutamine synthesis (7, 13). In
order for glycogen to provide the entire carbon skeleton of
glutamate/glutamine, the entrance of pyruvate into the TCA
cycle must occur by means of pyruvate carboxylase as well as
via pyruvate dehydrogenase (Fig. 2). Because of the impor-
tance of the glutamate– glutamine cycle for replenishment of
neurotransmitter pools (69, 93–95), inhibition of glycogen
degradation may lead to decrements in neuronal glutamate
synthesis. In agreement with this, it was demonstrated that
glutamate– glutamine cycle activity (Fig. 2) is impaired in an
obese rat model displaying hampered glycogen metabolism
in combination with a reduction in cerebral glycogen con-
tent (36). As filling of glutamatergic vesicles depends upon
the cytosolic glutamate concentration (96), this may ulti-
mately lead to impairments in neuronal glutamate release
upon depolarization. Hence, it may be speculated that a
lower vesicular glutamate release from neurons upon inhibi-
tion of glycogen degradation arises as a consequence of def-
icits in astrocytic glutamine synthesis and not (only) because
of energy deficiency.

Concluding remarks

Astrocyte glycogen plays a vital role in a number of brain
functions and is aberrant in not only neurological diseases but
also type 2 diabetes. An increased understanding of the regula-
tion and functional roles of astrocyte glycogen in health and
disease will likely uncover novel drug targets for the potential
benefit of patients.
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